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Allylindation of 1H-indole-3-carboxaldehyde in the presence
of azoles—revisited
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Abstract—The allylindation of 1H-indole-3-carboxaldehyde in the presence of azoles (e.g., pyrazoles and imidazole) under aqueous
Barbier-like conditions was reinvestigated and improved. Some of the results were at variance with a previous report (Tetrahedron
Lett. 2003, 44, 2101).
� 2006 Elsevier Ltd. All rights reserved.
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Since its introduction in the late eighties for Barbier-type
reactions,1 indium has rapidly gained wide popularity.
Several features of this metal recommend its application
to organic synthesis: (i) stability to air and water at
room temperature, (ii) high reactivity towards SET reac-
tions, (iii) the low heterophilicity that makes indium
organometallics tolerant to many functionalities and
(iv) the absence, up to date, of toxic effects. Indium
organometallics have been usually employed to form
many different types of C–C bonds, for example, them
in allylation and propargylation reactions, Pd-catalyzed
couplings and Reformatsky-type reactions. Indium-
mediated allylation (hereafter named allylindation) of
carbonyl compounds is copiously described in the liter-
ature: efficiency, mildness and selectivity are the key fea-
tures of this method for the synthesis of homoallylic
alcohols.2

The synthetic potential of allylindation was recently
shown to extend beyond this target. Concomitant with
the outset of the present study, Kumar et al.3 reported
that 1H-indole-3-carboxaldehyde 1a (as well as its
1-benzyl derivative 1b) reacted with indium and allyl
bromide in the presence of N-heterocycles (e.g., indoles,
pyrazoles and imidazole) to give the corresponding 3-
0040-4039/$ - see front matter � 2006 Elsevier Ltd. All rights reserved.
doi:10.1016/j.tetlet.2006.06.124

* Corresponding author. Tel.: +39 031 2386234; fax: +39 031
2386449; e-mail: giovanni.palmisano@uninsubria.it
[1-(1H-hetar-4-yl)-but-3-enyl]-1H-indoles 2a–f in iso-
lated yields of just under 95% (Scheme 1). Except for
the adduct 2b (from 1b and 1-methyl-1H-indole), sub-
stantial spectroscopic evidence for these structures
and, in particular, verification of structures 2c–f was
lacking. We verified the correctness of structures 2a–b
for compounds formed in the above reactions when they
were carried out in the presence of indole and its
1-methyl derivative, respectively.
However, the evidence presented by the authors led us
to cast in doubt some of the proposed structures 2c–f
for the adducts with azoles. As we also noted some dis-
crepancies between our results and the previously pub-
lished ones, we suspected that the products of ternary
reactions between 1H-indole-3-carboxaldehyde, allyl
bromide and azoles were the N-derivatives 3a–d, rather
than the postulated 2c–f (Scheme 1).
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3d: R1=Bn; R2=H; X=N; Y=C-H

3c: R1,R2=H; X=C-H; Y=N

3a: R1,R2=H; X=N; Y=C-H

3b: R1=H; R2=Me; X=N; Y=C-Me

2f: R1=Bn; R2 = H; X=N; Y= C-H

2e: R1,R2=H; X=C-H; Y=N

2d: R1=H; R2=Me; X=N; Y=C-Me

2c: R1, R2 = H; X=N; Y= C-H1a: R1 = H

1b: R1 = Bn
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Figure 1. ORTEP diagram for compound 3b.
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Our interest in indole chemistry prompted us to reexam-
ine this reaction.4 On attempting to repeat some of the
cited reactions, we immediately noted some differences.
Although the suggested solvent combination (i.e.,
THF–H2O, 1:1) was by far the most advantageous, in
our hands conversions were generally slower, requiring
higher temperatures and longer times (typically 6–10
vs 2–3 h). A 100% excess of allyl bromide (2 equiv)
and indium (1.4 vs 0.7 equiv) was also needed for the
reaction to go to completion (checked by TLC or
GCMS). The time required for the disappearance of In
was highly variable, ranging from 2 days to 1.5 h.5

Under our optimized conditions, the allylindation of
1a in the presence of pyrazole (1 equiv) gave in 5 h a
65% isolated yield of a 1:1:1 adduct [HR-EIMS: M+�

at m/z 237.1260 (calculated for C15H15N3 237.1265,
D = 0.5 ppm)]. We also carried out this reaction under
high-intensity ultrasound (HIU) (20 kHz, 40 W) that
dramatically reduced the reaction time (1.5 h) without
significantly affecting the yield (62%).

The chemical behaviour and a careful analysis of the ad-
duct raised questions about the proposed structure 2c.
By a combination of 1D and 2D NMR experiments
[i.e., gCOSY, 1H–13C (gHSQC, gHMBC) and 1H–15N
(gHSQC, gHMBC)] we were able to unambiguously as-
sign all 1H, 13C and 15N resonances of the adduct in
DMSO-d6. The 1H and 13C NMR (APT) spectra re-
vealed a total of 14 protons attached to carbons (viz.
2CH2, 10CH), 3 additional quaternary carbons and
the presence of one exchangeable proton at 11.05 ppm.
In the 2D NMR, spectra the pyrazole moiety was re-
vealed by signals at dH 6.19 (dC 104.49), 7.44 (137.73)
and 7.70 (128.26). 1H and 15N HMBC correlations
(optimized for nJNH = 3 Hz) observed from both N-100

(dN 131.0) and N-200(dN 305.0) to H-300 (dH7.70) indi-
cated the connection between N-100 (of the pyrazole unit)
and C-4 [of the (but-3-enyl)-1H-indole unit]. 1D and 2D
NMR data for the rest of the molecule were consistent
with structure 3a.6 Likewise, 1-benzyl-1H-indole-3-car-
boxaldehyde 1b7 reacting in the presence of pyrazole
gave over a similar reaction time, the corresponding
derivative 3d6 (rather than 2b) in 72% yield. 3,5-Di-
methylpyrazole took a little longer (7 h) to fully react,
still delivering a satisfactory 60% yield of adduct 3b6

(rather than 2d). Finally, we confirmed the structure of
3b by X-ray crystallography (Fig. 1).8

Taken together, the foregoing observations leave little
doubt that 1-(1H-indol-3-yl)but-3-en-1-ol 4 is involved
in this reaction. Indoles of this type are thought to react
with a nucleophile (e.g., pyrazoles) to give adducts
3a,b,d through the intermediacy of highly reactive 3-
alkylideneindolenine 5 (viz. a vinylogous imine),9 in a
three-component one-pot domino dehydrative allylinda-
tion–alkylation process.10 Because of its electrophilic
character, the exocyclic alkylidene carbon of 5 could
be considered as a likely candidate for intermolecular
nucleophilic attack. Furthermore, the fact that pyrazoles
are regioselectively alkylated at N(100) rather than at
C(300) is consistent with the well-known chemistry of
azoles. Accordingly, in free (NH)azoles, where (neutral)
pyrrole-like and (basic/nucleophilic) pyridine-like nitro-
gen atoms occur in the same molecule, an electrophile
will always react with the pyridine-like nitrogen.11 All
attempts to obtain the corresponding three-component
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adducts by allylindation of 1-EWG-substituted 1H-in-
dole-3-carboxaldehydes in the presence of pyrazole were
unsuccessful, which points to the involvement of the 3-
alkylideneindolenine species in the reaction sequence.
Interestingly, when allylindation was carried out under
our optimized conditions in the presence of imidazole,
not even trace amounts of a three-component adduct
could be detected (TLC). A substantial amount of in-
dium metal was present as a silvery nugget even after
24 h, while 1-allylimidazole and 1,3-diallylimidazolium
bromide were the sole identifiable products. There are
no substantial differences between our conditions and
those previously reported;3 however, even when we ex-
actly adopted the conditions of the cited work,3 we
could not observe any Barbier-type reaction: 1a and in-
dium remained mostly unchanged and 2e could not be
detected. We do not dispute the findings of Kumar,
although at this time we can offer no explanation for this
discrepancy. It is reasonable to assume that when the
reaction is carried out in the presence of imidazole, its
alkylation and subsequent quaternization take prece-
dence over the oxidative insertion to allylindium(I)
intermediate12 because imidazole is a stronger nucleo-
phile than pyrazole.13 For this multicomponent reaction
to succeed, imidazole must not be included at the begin-
ning of the reaction but added after 1-(1H-indol-3-yl)-
but-3-en-1-ol 4 has already formed. In the event, 3c6

would be formed through a one-pot three-component
consecutive allylindation–alkylation reaction.10 Optimal
conditions (giving 51% yield) were found to be the fol-
lowing: sequential treatment of 1a with allyl bromide
and indium in THF–H2O (1:1) at 50 �C for 2 h (moni-
tored by TLC), followed by addition of imidazole and
heating for a further 3 h. Alternatively, 3c was obtained
(69% yield) by reacting 4 (prepared by the method of
Sheu et al.)14 and imidazole (1.1 equiv) through the
agency of InBr3 (10 mol %)15 in chlorobenzene at
110 �C for 3 h. The homoallylic alcohol 4 was unstable
when stored at room temperature for several days. Its
lability so affected chromatography on silica gel that
its purification was impossible (vide supra). Interest-
ingly, under our conditions and in the absence of com-
peting nucleophiles, attempts to prepare 4 were
thwarted by its proclivity to undergo subsequent addi-
tion of allylindium(I) (via 5) leading to 4(1H-indol-3-
yl)-hepta-1,4-diene 66,16 (42% yield) along with several
by-products (Scheme 2).17
Preliminary data in the present report indicate that Bar-
bier allylindation on 1a, dehydration and nucleophilic
addition can be combined in a convergent one-pot ap-
proach to the synthesis of a variety of indole derivatives.
Investigations are underway involving other carbonyls,
allylic and propargylic halides, N- and C-nucleophiles.
In particular, when generated under our conditions,
indolenine 5 was efficiently trapped by a range of carbon
nucleophiles (e.g., electron-rich aromatics, p-excessive
heterocycles and some stabilized enols) leading to a two-
fold C–C bond formation, and this will be reported in
due time. This multicomponent procedure could be use-
ful for the production of a wide library with intriguing
complexity.
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